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P
We present a new approach to the construction of chemical reaction mechanisms by methods derived, in
part, from electronic circuit and systems theoretical techniques. The approach, correlation metric construction

- (CMC), is based on the calculation and analysis of a time-lagged multivariate correlation function of a set of
time-series of chemical concentrations. The time-series are composed of the observed responses of species
composing a chemical reaction network to random changes in the concentration of a set of input species.
The four-dimensional correlation-time lag function is subsequently transformed into a metric distance function
and is analyzed by multidimensional scaling and cluster analysis in order to (1) determine a measure of
effective dimensionality of the system; (2) construct a correlation diagram of the reaction mechanism that
graphically recapitulates, in large part, the reaction steps in the network by a technique that emphasizes the
strengths of coupling among the constituent species; and (3) determine the hierarchy of control in the network
and identify possible weakly coupled or uncoupled subsystems. In order to demonstrate the technique, we
analyze three different models of common types of chemical reactions. The analysis of these examples,
which include enzymatic substrate cycles, mass action kinetics, networks with rate-determining steps, and
networks satisfying the steady-state hypothesis, demonstrates that CMC is able to construct informative diagrams
which construct, in large part, the underlying chemical reactions and strengths of interactions among the

measured species in the network. ,

1. Introduction

The establishment of chemical and biochemical reaction
mechanisms can be a difficult task. In prior work we have
proposed a methodology for deducing at least core parts of
oscillatory reaction mechanisms from experiments designed for
that purpose.!™* Key features of the complex reaction mecha-
nisms of both the oscillatory chlorite—iodide’ and horseradish
peroxidase® reactions have been deduced by these methods.$ In
parallel work we showed the possibility of implementation of
logic functions and computations by means of macroscopic
chemical kinetics.”™'? From there we proceeded (o demonstrate
that parts of complex biochemical reaction networks implement
logic functions.” From these two lines of research emerges
the possibility of a new approach to the problem of the
construction and interpretation of reaction mechanisms by the
development and application of analyses from electronic circuit
theory, general systems theory,!*~16 and multivariate statistics.!?-19
We demonstrate this approach with the application of just one
method, which we call correlation metric construction (CMC),
to common types of chemical and biochemical reaction mecha-
nisms.

The goal of a CMC is to derive, from a set of time-series of
chemical concentrations (collected near the stecady state (or
equilibrium) of a chemical reaction network), a skeletal diagram
representing the connectivity (the reactions among measured

species) of the mechanism and obtain a graphical measure of

the regulatory structure of the network. The analysis is designed
to find the sites of strong control within networks of chemical
reactions and to simplify the analysis of such networks by
identifying possible chemical subsystems, each of which might
then be analyzed separately. CMC is composed of multiple
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correlation analysis'>!7182 from which a connection matrix
among the measured species is defined; multidimensional
scaling,!7-182! which produces the graphical representation of
the correlation structure of the mechanism; and hierarchical
clustering!7.1821.22 which delineates a hierarchy of regulation and
weakly coupled subsystems within the mechanism.

II. Methods and Applications

Consider a chemical system as shown in Figure 1. This
mechanism performs the function of a biochemical NAND
gate.!3 Mechanisms of this type are common in biochemical
networks. For example, the subnetwork of Figure 1 containing
$3—Ss is based on a simple model of fructose interconversion
in glycolysis,"® and the subnetwork composed of S¢—S; is
similar to the phosphorylation—dephosphorylation cycles found
in cyclic cascades.?*?* The goal of CMC is to determine both
the regulatory structure and the connectivity of the species in
the elementary reaction steps of this mechanism, solely from
measurements of the response of the concentrations of S3—S
to fluctuations in the input concenirations, I, and I, We assume
initially that it is possible to identify and measure all the
chemical species that make up the chemical network. This is
a strong assumption and is seldom satisfiable; we return (o this
point later in this articic and following articles. Further, we
assume that we may impose concentration variations (noise)
independently on a subset of chemical species in the network
at each time in the ordered set of times 7= {1, 12, fx, ... la}.
This subset of chemical species, /, is designated as the inputs
to the system. The rest of the species are designated as the set,
-1 The total number of chemical species is, therefore, |/] + |/
=1+ S = M. For the system in Figure |, we choose / = {I,
I} and . /'= {83, Sa. Ss. Se. S7}; thus, M = 7. The differences
between adjacent measurement times, #, and fy-y, in the set /"
are also assumed (o0 be on the order of, or longer than, the
slowest relaxation time in the network; that is. the network is
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Figure 1. Chemical reaction mechanism representing a biochemical
NAND gate: At steady state, the concentration of species S is low if
and only if the concentrations of both species I, and I, are high. All
species with asterisks are held constant by buffering. Thus, the system
is formally open though there are two conservation constraints. The
first constraint conserves the total concentration of Sy + S4 + S5, and
the second conserves S¢ + S7. All enzyme-catalyzed reactions in this
model are governed by simple Michaelis—Menten kinetics. Lines
ending in a circle-enclosed minus sign over an enzymatic reaction step
indicate that the corresponding enzyme is inhibited (noncompetitively)
by the relevant chemical species. We have set the dissociation
constants, Kp,, of each of the enzymes, E,—Es, from their respective
substrates equal to 5 concentration units. The inhibition constants, Ky
and Kz, for the noncompetitive inhibition of E, and E; by I; and I,
respectively, are both equal to 1 unit. The Vi for both E; and E; is
set to 5 units/s, and that for Ey and E, is 1 unit/s. The Vmu's for Es
and Eg arc 10 and 1 units/s, respectively.

driven near its steady state. If this assumption is not strongly
violated, then the following analysis still produces meaningful
results. However, if the driving occurs rapidly compared to
the relaxation times, the network acts as a low-pass filter and
the input signal is degraded. The frequency response of

chemical networks is an important area for further development

of this method but is left for later investigation.

A CMC of an unknown chemical reaction mechanism
proceeds with the following seven steps.:

(1) The set of measurements of the concentrations of the
species in /'is obtained as a function of the externally controlled
concentrations of the species in / at each of the time points 7.
Figure 2 is a plot of the time series for each of the species in /
and Jin Figure 1. One time point is taken every 10 s for
3600s. The effects of using a much smaller set of observations
is discussed in section IV. The first two plots are the time-
series for the two externally controlled inputs. The concentra-
tions of I, and I, at each time point are chosen from a Gaussian
distribution centered at 30 concentration units with a standard
deviation of 30 units. The choice of Gaussian noise guarantees
that in the long time limit the entire state-space of the two inputs
is sampled and that there are no autocorrelations or cross
correlations between the input species. The bottom five times-
series are the responses of S3—S7 to the concentration variations
of the inputs.

(2) The time-lagged-correlation matrix, R(r) = (r(7)), is
calculated for all T < n with the equations®

s;,(r) = ((xl(t) - ig)(x,(‘ +17)~ ij» 1)
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Figure 2. Plot of the calculated concentration time-series for all the
species composing the mechanism in Figure 1. Only the first two time
courses (those for I, and I;) are set by the experimenter. The
concentrations of I; and I, are chosen independently from a Gaussian
distribution with a mean and standard deviation of 30.0 concentration
units. Since the lower limit of concentration is zero, the actual
distribution of input concentrations has a tail toward high concentrations.
See step 1 in the text for a full explanation.

)
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where the angle brackets denote a time average, x(¢) is the rth
time point of the time-series generated from species /, and X; is
the time average of the jth time-series. The indices i and j range
over all species in the set / U J. R(7) is dependent, in a
complicated way, on the elementary reactions and their rate
coefficients. Figure 3 is a set of plots of some three-dimensional
cross sections from the four-dimensional R(7) surface calculated
from the data in Figure 2. Each cross section represents the
correlations, at all calculated time lags (here every 10 s up
to a time lag of £190 s), of the times-series corresponding to
a given species with those of each of the other species, and
itself. If the system were truly at steady state at each time point,
then the correlation surface for combinational networks (those
in which there are no feedback loops) would be flat except on
the t = 0 plane. Figure 3 shows only four cross sections
corresponding to the choice of three independent species and
one of the inputs. Since there are two conservation constraints
(see below) in this mechanism, only three of the S,’s are
independent; hence, these plots are representative of the entire
R(7) surface (except for the r,«(7) section). Examination of
the rs () section of R(z) (Figure 3D) shows that, as expected,
the concentration of S¢ perfectly anticorrelates with that of Sy
(by conservation) and negatively correlates with that of Ss.
Figure 4 shows two projections of the rs, () cross section
(Figure 3B). Figure 4A is a projection on the species-correlation
plane. This projection makes clear the relative correlations of
each of the species with S3. Figure 4B is a projection on the
time lag-correlation plane. Here, a rough sequence of events
is clear when it is noted that if one species correlates with a

0]
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Figure 3. Plots of cross sections through the four-dimensional time
lag-correlation surface calculated from eqs | and 2. The cross sections
are A = n, (1), B = r5, (1), C = r5, ), and D = rs [r). See step 2
in the text for explanation.
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Figure 4. Projections of Figure 3B down the species (A) and time lag
(B) axes. Figure 4A emphasizes the correlation of Sy with all the other
species. It correlates most highly with S¢ and Sy, next most with S,
and Ss, and finally with I; and I,. Figure 4B (truncated to emphasize
the region between T = +10 units) shows the large amount of time
information which is largely ignored by the simple analysis presented
here. If a species correlates at a positive lag with respect to S;, then
that species leads S, in time; a negative lag implies the correlating
species follows Sy. Since Figure 4B shows that the correlation with
the inputs tails toward positive lags, action on the inputs precedes action
at Sy. Action at S and Ss occurs simultaneously with Sy, and S¢ and
S follow action at Sy (as indicated by their left tails). In this particular
network this sequence of lags relates directly to the causal sequence.
The inputs affect the concentration of Sy—Ss, which then affects the
concentration of S¢ and S;. The amount of this information available
for a given experiment is dependent on the magnitude of the rate
cocfficicnts with respect to the timc between measurements.

second species at a positive lag, then the variation of the first
species occurs (on average) beforc that of the second. The
corrclation of a species with itself at nonzero lag is expected
due to relaxation to the steady state and should be symmetric
around zero lag. The sequence of events with respect to S; s,
therefore, as follows: 1, and I; change, followed by the
simultaneous changes in Sy—Ss, after which Se and S, change.
In this case, this time line is a sequence of causality. However,
in branched networks or networks with feedback, causality may
not always be determined in this way. Further, if the time
between measurements had been 70 s rather than 10 s, the
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TABLE 1: Listing of the “Significant” Connections
Calculated among the Chemical Species Composing the
Reaction Mechanism in Figure 1 (see Step 3 in the Text)

Sa Ss Se Ss
I, -0.31
I -0.32
Sy -0.72 -0.71 -0.90 0.90
Se -1.00

network would have been at steady state and no time delays
would be observed.?

The nullity (the number of zero eigenvalues) and null-space
(the space spanned by the corresponding eigenvectors) of the
correlation matrix determine the number of conservation
constraints and rapidly established quasi-equilibria in the
network and the species involved, respectively (since species
involved in such relations are completely dependent on one
another). For example, the cigenvalues of the (zero lag)
correlation matrix derived from the time-series in Figure 3 are
A, = {3.89, 1.3, 097, 0.67, 0.17, 1.7 x 1077, 7.0 x 107%}.
Thus, since the last two eigenvalues are so small compared to
the first five, the nullity of the matrix is 2, as expected from
the two conservation conditions.

(3) A connection algorithm generates an approximate depen-
dency list among the different species. Ideally, we would like
the dependency list to reflect directly the reactions between
species. However; dependency in this context is not necessarily -
related to direct causation but rather to a high degree of
association among sets of variables.2® There are a number of
common analyses, such as multiple regression, canonical
correlation,'® linear structural relations,?’28 and Box—Jenkins
time-series analysis,2® which attempt to determine the depend-
encies of a set of observable dependent variables on known
independent variables. All of these techniques are essentially
regression analyses in which an estimate of the mean of one
set of variables is made based on knowledge of another set of
variables. In order to perform the analyses, a model of the
system generally has to be specified and fit. Since one goal of
CMC is to construct an approximate model of the interspecies
interactions, we wish to avoid the explicit specification of a
model (chemical mechanism). Corrclation-based analysis mea-
sures a symmetric degree of association between two variables.
Thus, correlations yield a convenicat metric of distance between
two species (see below). Since the balance of our method (steps
4-7) relies on such a metric, we develop a simple correlation-
based agglomenative dependency algorithm with the following
iterated steps: (a) Designate each species by its own group. (b)
Find the two groups, i and j, cach containing a disjoint subset
of species for which the magnitude of correlation (at any lag)
between a species in i and one in j is the maximum over all
pairs of groups. (c) Make these two groups into onc group and
list the connection (found in step b) between the two species
(one from each original group) with the maximum correlation.
If two or more specics from onc group correlate with species
in the other with (nearly) the same maximum magnitude, then
list connections between these as well. All listed connections
arc designated as “significant” connections. (d) Go back to b,
now with one less group, and repeat the steps until there is only
a single group left. This procedure creates a singly linked
system graph in which every species is connected to at least
one other species. '

Application of the connection algorithm to the full correlation
surface of the NAND mechanism yields the values of the
significant connections listed in Table 1. The algorithm neglects
the direct effect of each input species on the concentration of
Sy since we are using only a single-link dependency; the
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magnitude of the correlation between the inputs and S; is weak
since Sy is maximally affected only when the inputs are both
low or both high at the same time (a relatively rare event). It
may be possible to eliminate such statistical misses and
redundancies in the connection list by including chemical
knowledge, incorporating the available correlation time lag
information, and application of the transinformation criterion
of probabilistic reconstruction analysis,'4~'6303! which uses
conditional probabilities derived from the full (calculated) joint
probability density function generated from the time-series. We
report on this measure of connection in later work. Lastly, the
difference in correlations of S4 and Ss to S3 is merely a result
of the sampling statistics.

The connections between species, since they are based on
correlations, represent a noncausal structural model of the
system. Correlations may be decomposed into four parts: (1)
direct effects in which one variable is a direct antecedent to a
second (e.g. one species directly converted to another by a
chemical reaction); (2) indirect effects where one variable
influences another by way of a third (e.g. one species affects
the production of a second which is then converted directly to
a third); (3) spurious effects which occur when two variables
have a common antecedent (e.g. when one species is converted
into two other species by separate reactions); and (4) unanalyzed
effects which arise from correlations between the externally
controlled variables.3? In order to construct a mechanism (a
causal model), only the first contribution to the correlation
between two variables should be considered. We do not
currently separate the measured correlation into these explicit
components. In the absence of special knowledge of the
chemical mechanism, methods to do so, such as path analysis
and LISREL,?’?8 require extensive and complex calculation
as well as a number of restrictive assumptions. Our simple
definition of connection, though possibly not as informative as
a full causal analysis, yields a good first guess for a relational
structure among the species (ideally defined by the first
component of correlation above).

A partial description of the function of the network may be
read from the sign of the connections in the list. For example,
since I; and I, are negatively correlated with S4 and Ss, both of
which are negatively correlated with S3, we may hypothesize
that [Ss] is high only when [I,] or {I2] or both are high, and
[S3] is low otherwise. So the subsystem of Figure 1, composed
of S3—-Ss and with the output defined as [S;), may be
functionally analogous to a logical OR (or an AND) between
I, and I3. In this particular case, the function is an AND.

(4) The time-lagged correlation matrix, R(7), is converted
into a Euclidean distance matrix with the canonical transform!#

d;=(c;— 2+ )t =210 -cp'* (3

L)

c,] = max"jj(r)lr (4)

where the second equality in eq 3 follows from the properties
of the correlation matrix. The formula in eq 4 defines ¢;; to be
the absolute value of the maximum correlation between the time-
serics for species i and that of species j, regardless of the value
of 1.33 We define D = (d;) to be the distance matrix. Since D
is Euclidean, its elements automatically satisfy the three standard
tests for a metric space: identity, symmetry, and the triangle
inequality. In the case of perfect correlation between two
variables, the triangle inequality is violated, a situation that may
be remedied (without dire consequence) by adding a small value,
€= 1 x 10719 to the distance between them. The particular
metric defined by eq 3 is a measure of independence between
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two variables. [f the correlation between two variables is small,
then the distance between them is large.

(5) The classical multidimensional scaling (MDS) method 82!
is applied to the distance matrix calculated in step 4 in order to
find both the dimensionality, A, of the system and a consistent
configuration of points representing each of the species. This
is accomplished by finding the eigenvalues, 4;, and eigenvectors,
z;, of the centered inner product matrix, B, defined by

= - JHUHH )

=1-Lqr
H=I Mll ©

where H is the centering matrix,!® I is the M x M identity
matrix, and 11’ is the M x M unit matrix. The operation of
the symmetric, idempotent matrix H on the vector x has the
effect of subtracting off the mean of the entries of x from each

" of its elements, i.e., Hx = x — X1 where ¥ = n™'Yx;. The

number of significant eigenvalues of B (defined in Table 2) is
the dimensionality, A, of the system, and the vectors of the first
A coordinates of the M eigenvectors compose the principal
coordinates of points representing the chemical species in the
correlation diagram, (Formally, each point represents the
particular time-series generated for a given chemical species.)
The eigenvectors are normalized such that z7z; = 4. The
distance between each pair of points is inversely related to the
correlation between the corresponding species. If the M series
are independent, then all the dj; are equal to V2 and points
representing each species must fall on the vertices of a regular
M — 1 dimensional hypertetrahedron. At the other extreme,
when all species perfectly correlate (or anticorrelate), then the
dj; are all equal to 0 and there is a single degenerate point in
the system. By construction, however, the inputs are completely
uncorrelated so the minimum dimension derived from a CMC
is |/l — 1. Most often, we are interested in the first two
principle coordinates of the MDS solution since the configura-
tions may then be plotted on a plane and are thus easy to
visualize.

The numerical results from the MDS analysis of the distance
matrix derived from eqs 3 and 4 are shown in Table 2. The
columns of Table 2A are the cigenvectors of B, and the rows
are the coordinates of each point (time-series). Each eigen-
vector, %, corresponds to the projection of the kth coordinate
of each of the points on an orthogonal basis vector. Each of
the eigenvalues (Table 2B) are an indicator of the degree to
which the vectors from the origin of the configuration to each
point are projected along the corresponding basis vector. In
this example, over 99% (for az3) of the distance matrix is
“explained” by the first three cigenvalues. Thus, we find the
dimensionality A & 3, which represents a reduction of three
dimensions from the theoretical maximum of six. Two of these
dimensions are lost due to the two conservation constraints. The
third dimension is lost due to constraints imposed by the degree
of interaction among the subsystems. The two-dimensional
projection of the coordinates of the points listed in Table 2A is
shown in Figure SA. Each pair of points with a nonzero entry
in Table 1 is connected by a line. This represents the
correlation-metric diagram which depends on the reaction
mechanism and rate coefficients (as well as the properties of
the perturbations, such as the frequency spectra, average values,
and standard deviations). This diagram reproduces. many
features of the standard mechanistic diagram (Figure 1) but
differs in that it has additional information, such as the extent
of coupling (tightly or loosely) among subsystems in the
network.




974 J. Phys. Chem., Vol. 99, No. 3, 1995 Arkin and Ross

TABLE 2: Eigenvectors and Eigenvalues of the Matrix B (Eq 5) Determined by the Classical MDS Analysis of a Distance
Matrix Calculated from the Correlation Surface in Figure 3 (See Steps 4 and 5 in the Text)*

(A) Eigenvectors, z;

point/z 1 2 3 4 S 6 7
1(L) 6.68E—01* ~5.84E—01 4.05E-01 5.5IE-02 1.77E-02 -8.20E~09 ~3.52E-10
2(I) 7.00E~01 5.26E~01 -4.30E-01 4.93E-02 1.42E-02 ~8.20E-09 -3.52E~10
3(Sy) -4.20E-01 7.29E-03 ~8.16E—03 2.0SE~01 1.90E—03 —6.82E-09 -7.67E-09
4 (Se) ~4.20E~-01 7.29E~03 -8.16E-03 2.05E~01 1.90E—03 ~9.58E-09 6.9TE—09
5(S4) —1.44E~01 ~5.51E-01 ~4.02E-01 ~1.60E~01 ~7.5SE-02 -8.20E-09 -3.52E-10
6 (Ss) -7.15E-02 5.60E—01 4.30E-01 -138E-01,  -7.65E—02 -8.20E—09 ~3.52E~10
7(S3) -3.14E-01 3.49E-02 1.27E-02 ~2.16E-01 1.16E-01 ~8.20E—09 -3.52E-10
(B) Eigenvalues, A, ‘
k A ax Arx
1 1.413496E+00 3.978311E-01 4.937104E-01
2 1.237497E+00 7.461268E~01 8.721279E-01
3 6.958617E~01 9.419783E~01 9.917824E-01
4 1.80S5S6E—-01 9.927960E—01 9.998381E-01
5 2.559576E—02 1.000000E+00 1.000000E+00
6 4.747935E-16 1.000000E+00 1.000000E+00
7 1.080736E~16 1.000000E+00 1.000000E+00

? The cocfficients a4 and a» are agreement measures of the degree to which the distance matrix is “explained” by the k-dimensional MDS
solution.'* The measures are calculated from: aix = (Tt AVEL, I4] and az; = (54, A2V/E0 A2, where the eigenvalues are sorted in decreasing
order. Thus, according to a;4, 49.4% of the distance matrix is explained by one dimension (azy = 0.494) and 100% of the matrix is explained by
a configuration in five dimensions (a2s = 1.0). Columns 1 and 2 of the eigenvector matrix define the x and y positions of points in Figure 4A,

respectively. ® Read as 6.68 x 107"
A B
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Figure 5. Classical and optimized MDS solutions calculated from the
canonically transformed correlation surface from Figure 3. Figure SA
is the two-dimensional projection of the three-dimensional (a;3 =
99.2%) (or four-dimensional; a:« = 99.98%) object found by the matrix
method described by step § in the text. The coordinates for the points
in Figure SA are the same as the first two columns of the matrix of
cigenvectors in Table 2A. The second diagram (Figure 5B) is derived
from the MDS optimization method discussed in step 6. The lines
between points in both diagrams are obtained from the results of step
3 (Table 1). The respective stresses of the two diagrams (A and B)
are 3.50 and 0.71, as calculated from eq 7. Thus, Figure 5B is more
representative of the measured distance matrix. Both diagrams
correspond to rotated and slightly distorted approximations to the
reaction mechanism in Figure 1.

(6) Figure 5A is a projection of the high-dimensional MDS
object onto two dimensions. The distances between the points
in the 2-D representation are therefore less than or equal to actual
mcasured distances. A more representative 2-D diagram may
often be obtained with an optimization-based MDS method that
allows the distances between the optimized points to be both
greater, cqual to, and less than the actual distances.?' Here, an
optimization algorithm minimizes a stress function. One
possible definition of such a function is

Stress(d) = (2(‘7:1(6) - (l,j)z)"2 )

)

where o, (d) are the calculated geometrical distances between
pairs of iitially randomly placed d-dimensional points in a 1est

configuration. The positions of these test points are moved by
the optimization algorithm such that the distances between them

are as close as possible, for a given 4, to the experimentally

measured distances between the species, djj. Since we have

already determined the full dimensionality of the object in step

5. we set 4 = 2 and minimize the stress using a simulated

annealing algorithm,* which is a numerical global optimization

techniques.

The diagram derived with this algorithm from our example
is shown in Figure SB. To determine whether part A or B of
Figure 5 is the better representation of the four-dimensional
diagram, we calculate the stress of each diagram with eq 7. The
diagram with lower stress is the most representative configura-
tion. According to the stress criterion, the configuration of
points in the optimized diagram is more representative of the
actual distance matrix. (See the caption of Figure 5.) Note
that all rotations, reflections, and translations of the MDS
diagrams are also valid MDS solutions. Both diagrams, parts
A and B of Figure 5, are rotated and slightly distorted versions
of the diagram of the reaction mechanism shown in Figure 1.
Thus, from the state measurements (calculations) of the time-
series, we derive a construction related to the reaction mecha-
nism for the system, but with the added information of the
relative coupling strengths among species.

(7) Finally, a cluster analysis is performed on the distance
matrix. This method is used to summarize the grouping of
chemical subsystems within the reaction mechanism and to give
a hierarchy of interactions among the subsystems. There are
many techniques of cluster analysis,'s2"22 but for simplicity we
employ a nonparametric hierarchical clustering technique called
the weighted pair group method using arithmetic averages.?
The algorithm operates on D in three iterated steps: (a) Search
the M x M distance matrix for the minimum distance between
pairs of clusters and let this distance be dj;. In the initial step,
there are M clusters (ug, Uy, ..., uy) cach containing a single
point (species). (b) Define a new cluster, u;, containing the
two objects (i and j) with the minimum distance between them.
Define the branching depth of this cluster as by = d;/2.0.
Finally, define the distance between the new cluster, &, and all
other clusters, | # i or j, with the equation dy = (dy + dV/2.0.
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Figure 6. Hierarchically clustered dendrogram calculated from the
CMC analysis of the mechanism in Figure 1. The dendrogram is
produced as described in step 7 in the text. The hierarchy is a good
representation of the flow of control from the inputs down to S¢ and
S '

(c) Delete clusters i and j from the distance matrix and add the
newly computed cluster distances to the matrix. If M is not
equal to 1, then decrease M by one ‘and return to step 1,
otherwise the algorithm is done. This procedure generates a
dendrogram. :

The dendrogram, derived from a cluster analysis of the
distance matrix calculated in step 4, is shown in Figure 6. The
tree may be interpreted as follows. Since the branching depths
of species I, and I, are nearly identical but they do not belong
to the same cluster, we may consider the two as separate
subsystems which couple with similar strengths to the rest of
the network (the species below the inputs in the diagram). A
similar assumption may be made about species Sq and Ss. The
diagram is then simple to analyze. Since we control species I
and I, these in tum most strongly influence the changes in
concentrations of both S4 and Ss. Species S and Ss then
cambine to control the concentrations in the subnetwork {S;,
Sé. S7}. This three-member subnetwork may be further divided
into {S;} and {S¢, S7}. From the correlation-metric diagram
and the eigenanalysis of the correlation matrix we know that
S« and Ss are the determinants of Sj (since the connections are
significant and the three species are involved in a conservation
relation), which subsequently controls the concentrations of Sg
and S;. These last two species also satisfy a conservation
constraint. Thus, a hierarchical diagram of control is derived.

III. Further Examples

The following examples are constructed in order to clarify
the usage and interpretations of CMC analysis. Figure 7 shows
a chemical system composed of two subsystems, one like that
of Figure 1 (subsystem 1) and another realizing a NOT I; AND
NOT I function (subsystem 2). The kinetics of subsystem 1
are chosen to be somewhat faster than the analogous system in
Figure 1. Subsystem 2 is composed from substrate cycles
similar to those in subsystem 1, but the kinetics of the enzyme
reactions are much slower than that of subsystem . This sytem
was chosen to demonstrate the concept of chemical subsystems
as defined by CMC and to demonstrate two interesting inter-
related problems which arise during the analysis: (1) ambiguity
arising from common causal antecedents and (2) low-pass
filtering of the input signal(s). Figures 8 and 9 are the result

Figure 7. Mechanism composed of two different realizations of a
chemical NAND gate.  The first NAND-like submechanism is com-
posed of species S3—S; plus the inputs. The second is composed of
Ss—S14 plus the inputs. Both subsystems have the inputs as common
causal antecedents. As in Figure 1, the concentrations of all species
bearing an asterisk are considered to be held constant by buffering or
external flows.
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Figure 8, 2-D projection of the classical MDS solution resuiting from
a CMC analysis of the mechanism in Figure 7. Note that, despite the
fact that both NAND gate subsystems of the mechanism are driven by
common inputs, the different subsystems group on different half-planes
of the diagram. The placement of the inputs of the diagram is due to
the choice of rate constants (see text). The reasons for the connection
drawn between {S\, Sis} and S and for the lack of connection between
{Su. Si2} and the other subsystem or inputs are described in the text.
For this diagram a24 > 99.8% and the stress is 7.47 (versus 3.38 for
the 13-dimensional solution).

of the CMC anaysis of this nctwork. The two subsystems
separate onto the upper and lower-half-planes of Figure 8 and
onto two different branches of the dendrogram in Figure 9,
respectively. The MDS configurations of the two subsystems
have similar structures, as expected. The input species I, and
I, however, group very close to Sy and Ss and on the far side
of the MDS diagram away from S3 and Sis. This occurs
because the rates of interconversion of, for example, S; and S4
are faster than the corresponding interconversion of Sg and So;
the concentration of species S4 is able to follow better the
fluctuations in the input species than Sg—Ss. If the enzymatic
reactions are slow, then not very much material is converted
cach time the inputs change state. Large changes in concentra-
tion are only obtained (assuming Gaussian driving noise) when
there are substantial low-frequency components in the input




976 J. Phys. Chem., Vol. 99, No. 3, 1995

A
-

S

Depth of Branching
L)

»N

1 S¢ly S5838¢ S75135g S9 512514510 Sy
Figure 9. Hierarchically clustered dendrogram calculated from the
CMC analysis of the mechanism in Figure 7. The two different NAND
subsystems separate onto the two major branches of the dendrogram.
The inputs cluster with the first subsystem (the one similar to the
mechanism in Figure 1) since its kinetics are very rapid compared to
the second subsystem. The branch containng subsystem 1 is not
structurally equivalent to the dendrogram in Figure 6 because, as a
result of the kinetics of subsystem 1 being fast compared to those of
the mechanism in Figure 1, the inputs coupie more tightly to S, and
Ss.

ky k ky k K

Group! Group 2 Group 3

Figure 10. Lincar reaction network. All reactions are first-order mass-
action kinetics. The back reactions (k- —~k-g) are always 0.1 s~!. &,
is setto 1.0 s™!. The remainder of the forward rate constants are broken
into three groups, as shown. Within a group, all the forward coefficients
are assumed to be identical. These rate constants are chosen from three
possible rates: 0.7, 70.0, and 7000.0 s~ (slow (S), medium (M), and
fast (F)).

signals. Thus, slow reactions act as low-pass filters for their
input signals. Though both the subnetworks S3—Ss and Sg—
Syt filter the signals sent by changes in concentration of I, and
I, examination of the Fourier transforms (not shown) of the
time-series for each set of species shows that the slower kinetics
of Sg—Si leads to a much stronger exponential decay of the
components in their frequency spectra than those of S3—Ss. The
correlation (which is related to the product of the Fourier
transforms of two time-series) of I, with Sg is, therefore, much
less than with S,. The fact that both S3—Ss and S3—S,, filter
the signals (albeit to different extents) implies that subsystem
2 is better correlated with S3—Ss than with I; and I;. This also
explains why I; and I; appear on the far side of subsystem 1
with respect to subsystem 2. It may be possible to correct for
the filtering effects by weighting the Fourier transforms of the
series by an appropriate exponential factor. This may allow
the better decomposition of the correlation into its direct,
indirect, and spurious components. It must be remembered,
however, that CMC relies on the fact that each chemical
mechanism filters input signals in a characteristic fashion,
resulting in an identifiable MDS diagram. This point is
emphasized again in the next example.

The formulation of many reaction mechanisms is based on
two simplifying possibilities:* (1) The reaction mechanism has
one ratc-determining step. (2) There is no rate-determining step,
but the concentrations of intermediates are (ncarly) constant
(stationary-state hypothesis). Figure 10 shows a simple un-
branched chain of chemical reaction steps. Such conversions
are common structures in metabolic pathways and, thus, provide
an interesting case study for CMC. In order to demonstrate
the effects of different patterns of rate coefficients on the
outconie of a CMC analysis, we break the linear network into
three sets of reactions. Those governed by the first three rate
coetficients, ky—ky, are the first group; ks defines the second
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Figure 11. Two-dimensional projection of the MDS solutions of the
five kinetic schemes for the linear mechanism in Figure 9. The three-
letter triad in the upper right comer of each diagram indicates the pattern
of rate constant for the first, second, and third parts of the network,
respectively. Sece the caption of Figure 10 and the text for more
information.

group; and the last three rate coefficients define the third. Each
group of coefficients may be defined to be slow (0.7 s~!),
medium (70 s™"), or fast (7000 s™*) with respect to the switching
time of the input time-series in Iy (switching frequency = 20
s~1). Figure 11 shows MDS diagrams resulting from CMC
analysis of the lincar networks with five different sets of rate
coefficients. In all cases time-series were collected every 0.05
s for 100 s. The average concentration of the input was one
unit, and the standard deviation was 0.1 units. Figure 11a results
from a scheme in which all three groups of rate constants are
chosen to be slow (no rate-determining step). When all the
rate constants in a set of consecutive reactions are comparable,
the stationary-state hypothesis is often employed to solve
analytically the kinetic equations. The approximate autocor-
relation time for the time-series, defined as the time lag at which
the correlation of a series with itself decays to zero, is about
2.5 s (50 lag times. i.e., 50 observations). The system is not
very close to steady state in this case, but a reasonably linear
MDS diagram is produced nonetheless. There are three points
to be made: (1) The large distance between the input and S,
occurs because fluctuations in the input species occur too quickly
for S to follow. Thus, the filtering effect described above icads
to a larger distance than expected. (2) This distance between
adjacent specics decreases with the number of steps away from
the input. (3) The diagram is a curve instcad of a line. These
last two points are related. The distance between adjacent
specics decreases because of filtering. As the signal propagates
through the network, the high-frequency components get suc-
cessively filtered out until only the frequencies stower than the
characteristic relaxation times of the network survive. As
filtering becomes more severe in the network, subsequent species
become more strongly correlated (since they are able w follow
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one another exactly). This same effect is partly responsible for
the curvature of the line. Since later species become more
correlated, their correlation with earlier species also becomes
more similar. That is, S¢ and S; are highly correlated, which,
in this case, implies that they are correlated at nearly the same
(relatively iow) level with S;. Therefore, the point representing
S7 must be placed at approximately the same distance from S,
as S¢. Further, since lower comrelations are measured less
accurately than high correlations (see below), the difference
between n, s, and n, 5, becomes less significant (not as accurately
measured). This leads to the so-called horseshoe effect often
seen in the MDS of serial data.'8

Figure 11b shows the case in which the middle step is fast
compared to the other reaction steps. Since the rate of
conversion of S4 to Ss is large, we expect the distance between
these two species to be small. However, in the diagram it is
the distance between S; and S, which is markedly decreased.
Since S4 is immediately converted to S, which itself is slowly
degraded, the autocorrelation time of Ss increases. This implies
that its correlation with S4 (the autocorrelation of which relaxes
immediately) is weakened. However, since the back reactions
are small, the (relatively) small concentration of S4 follows S3
nearly perfectly.

Figure 11c shows the case in which the reactions in the last
part of the network are slow. Here, the distance between Sq
and Ss is large, as expected. Since this distance is largely a
result of a severe low-pass filtering of the signal sent by Sy, the
‘correlation of Sy with all species in the last part of the network
is relatively low. Thus, these last species are almost equidistant
to S4 even though the distances among them are significant.
This results in the observed displacement of the S5~S; away
from the rest of the network.

Figure 11d is the most pathological of the diagrams. It shows
a loop in the structure of the network. The rate constants here
are all medium. The autocorrelation time in this network is on
the order of the fluctuation time of the input (0.05 s). With
these rates, a signal initiated at the inputs travels approximately
half-way down the network by the time of the next input
concentration. This implies, for example, that at zero time lag
S correlates highly with the input and species S; and S; but
not Ss—8;. S correlates with these latter species at one lag
time. Because S4 is observed just as it is responding to the
current signal but still relaxing from response to the last signal,
its correlation with S, at both lags is smaller than expected.
Since the correlation metric does not take into account the time
at which the maximum correlation of each species with S,
occurs, Ss appears “closer” to S; than does S4. This leads to
the observed loop in the diagram. If the metric is modified to
take into account only the zero lag correlation, then the expected
linear diagram is obtained (data not shown). This example
shows how the characteristics of the input noise can strongly
effect the outcome of a CMC experiment in some regimes.
However, such pathologies can often be diagnosed by direct
examination of the correlation surface. .

Finally, Figure | le shows the case in which all reactions are
fast except the one in the second group which is slow. This
corresponds to the case of a network with a rate-limiting step.
Here, the autocorrelation times in the network are much faster
than the input fluctuations, so all species in the first and last
section of the network are cffectively at steady state and
therefore perfectly correlated. The slow step in the middle,
however, causes filtering of the signal and thereby causes a
decrease in correlation between the two sections of the network.
This results in the dumbbell shape of the network.
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IV. Discussion

With the application and development of concepts of elec-
tronic circuit and systems theory, and techniques from multi-
variate statistics, we obtain a MDS correlation-metric diagram
which defines and represents the connectivity and the strength
of kinetic interactions among the species of a reaction network
from a time-series determination of chemical concentrations.
In addition, we obtain the startling result that, for the systems
studied, the MDS diagram recapitulates many features of the
reaction mechanism. We believe these approaches to be
promising and to warrant further study. A number of caveats,
improvements, and new directions are apparent.

Correlation metric construction is a statistical analysis, hence,
care must be exercised to take into account the significance of
all the calculated correlations. If we ignore any error in the
concentration measurements themselves, the probability that
|ri{7)] is larger than it should be in the null hypothesis (which
is that species i and j are uncorrelated) is erfc((ry(7)?n/2)'?),1?
which is a rapidly decreasing function of n, the number of
observations. Smaller correlations are, therefore, less significant
for a given n than large correlations, a fact which is currently
ignored by our connection algorithm. This may lead to the so-
called horseshoe effect often seen when MDS is used to seriate
data.'® . Experiments might be continued until none of the
correfations are changing by more than a given percentage.
However, we must be aware that for a given set of parameters
defining the random perturbations on the inputs and for a finite
number of measurements the calculated correlations are only
valid for the portion of the state-space of the system observed.
The state-space of a reaction network is defined here by the
range of all possible sequences of input concentrations param-
etrized by the initial values of the concentrations of all the other
species composing the network.

Once the correlations are properly measured, the rest of the
analysis proceeds simply, except for the caiculation of the
connection diagram. The connections among points in the MDS
solution determine which species participate in each reaction
step or interaction (for example, one species might be an effector
for the enzymatic production of another species). The connec-
tion algorithm described in step 3 is primitive in that (1)
causality cannot be hypothesized since even the value of 7 at
the maximum correlation between two species is ignored (and
see discussion above) and (2) the minimum correlation sufficient
for connection between two species is chosen merely on the
assumption that all species are connected to at least one other
species. This algorithm implies a somewhat arbitrary definition
of significance of correlation between a single variable and one
or more other variables. It may be possible that transinforma-
tion,® partial correlation analysis, and multiple regression or
path analysis'?1827.28.30 can be used to discover high-order
relations not initially uncovered by the relatively simple
correlation analysis. One such example of a high-order relation
is the combined effect of I; and I on S; in Figure 1.
Transinformation, multiple regression, and LISREL also provide
measures of significance via the y? statistic and provide estimates
of the percentage of the variance of one variable explainable
by the variance of a subset of the others,!6.18:2027.28.3 These
methods may, therefore, lead to a better definition of the
connection among species as well as provide an indication of
the existence of unmeasured variables in the case when‘the
variation in a measured species cannot be explained by variations
in itself, the other measured species, and the inputs. Suppose,
for example, we can measure three species in a network, I, A,
and B. Suppose further that I, is a direct precursor of both A
and B but that it must react with an unknown (or not directly
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measurable) species U in order to produce B. Assuming the
concentration of U fluctuates significantly during the time course
of the experiment, part of the fluctuation of [B] is due to these
changes in (U]. It is, then, impossible to explain fully the
variance in B using the two measured variables [, and A and
prior values of B, and as a result, a significant residual, ep, will
be found when B is regressed on these known variables. A
large residual between the measured variance of B and the
amount of variance of B explained by the known variables thus
indicates the existence of unmeasured species.

The MDS correlation diagram is a new representation of a
reaction network. Aside from reproducing in large part the
mechanistic diagram for a chemical reaction network, there is
information present regarding tightness of kinetic coupling
among the species. For example, species S¢ and S7 from the
mechanism in Figure 1 are drawn as far apart as species S3 and
S4. However, in the diagrams plotted in Figure 5, Sg and S,
are plotted on top of one another since they are completely
correlated. Thus, the MDS diagram is distorted to reveal loci
of tight regulation; for example, on the MDS diagram the point
representing Sy is close to the pair S and S7 and is the species
whose concentration most determines their concentration. The
hierarchical clustering results, then, are largely a recapitulation
of what is evident by eye from the MDS diagram. There is a
related point: in the example derived from Figure 1, the
concentrations of the input species are within the region of
saturation of their target enzymes (concentrations much greater
than K|) most of the time; however, these concentrations may
take on values near or below the inhibition constant, and thus
transitions between low and high concentrations of S; are
observed. If we had chosen the parameters of the Gaussian
driving noise such that the input concentrations were always
much greater than the inhibition constants, then such a transition
would never be observed and the correlation between S; and
the pair S¢ and S; would have been much reduced. Alterna-

tively, if the average values of the input concentrations had been »

in the transition region of enzymes (i.c., close to the K;'s), the
response of the species to variation of the inputs would be highly
nonlinear. In this case, linear correlation coefficients would
underestimate the relationship between variables. In general,
Spearman nonparametric rank correlation!??0 should be used
since it requires only monotonic (as opposed to linear) relation-
ships among variables.

Besides the average concentration and standard deviation, the
other important parameter of the driving noise on the inputs is
the frequency spectrum of the external perturbations. If the
concentrations of the inputs switch at a rate comparable to the
slowest relaxation times in the system, then the network will
attenuate the high-frequency components in the input sequence.
In our analysis we chose the time between changes of input
concentrations such that the system was driven near its steady
state. Figure 4B shows that the specics have completely relaxed
in less than 10 time lags (100 s) after perturbation. This implies
that if the variation of the input concentrations is much faster
than 100 s (say on the order of 1 s), the network will not have
time to respond and the correlation strength between system
components and the inputs will be lost. This effect is a mixed
blessing for the current analysis since it lcads (o an artificially
high correlation between species at laci remote from the entry
points of the inputs; the input signal may be filtered similarly
at disparate but equally remote sites. The resultant correlations
tend to group highly filtered species together far from those
species more directly connected to the inputs. (See section I11.)

This is a desirable feature except that the distances between

the highly filtered species will be smaller than expected even
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when such species do not interact. Further, as shown in the
analysis of the mechanism in Figure 7, filtering may resuit in
the spurious assignment of connection between two species.
Clearly, the final MDS diagram is partially dependent on the
parameters of the noise imposed on the system. It is possible
that frequency domain approaches to time-series analysis??7
may help in a study of the role of frequency transfer functions3’
in the control of chemical networks.

We have assumed that all species involved in the mechanism
may be identified and measured. For systems with many species
this has not been possible. When there are missing species,
CMC may still be performed on the measurable subset of
species. The effects of the other species are subsumed into the
correlations among the known species, and a consistent diagram
can be constructed. The MDS diagram, then, may not be an
obvious representation of the underlying mechanism. In fact,
due to signal loss in the network, certain connections between
known species may be lost. On the other hand, unknown species
that participate in the dynamics of the network, but are not
ultimately determined by the input concentrations (i.c., unkown
species produced and degraded by uncontrolled sources in the
network), can be helpful in strengthening the correlations among
known species by providing another source of information
(chemical material) to be processed by the network. For
oscillatory reaction mechanisms it is possible to construct the
Jacobian of the reaction network by applying a delayed feedback
in each of the species in the mechanism and then measuring
the response of only one species.’ Further, reference 3 shows
how to deduce a reaction of mechanism from the Jacobian of
the network.

Finally, the networks analyzed in this paper are combinational
networks, i.e., networks with no (explicit) feedback loops and,
therefore, no memory or autonomous dynamics. Nonzero
correlations away from v = 0 are, therefore, caused only by
slow relaxation of the chemical species to their steady states
(slow reaction steps). In sequential systems, in which feedback
exists, nonzero time-lagged comrelations may be indicative of
species involved in a feedback relation. For systems that contain
feedback in such a way as to generate multistability and
oscillations it may be impossible, in the absence of any prior
knowledge, to predict.in advance how many states are available
to the network and how they are triggered. However, a series
of experiments has been suggested for such systems from which
the essentials of the core mechanism containing feedback may
be deduced.!-33% The methods discussed here may be useful
complementary approaches to determining reaction mechanisms
of coupled kinetic systems.
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